Search results for "Drug Design"

showing 10 items of 232 documents

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes.

2018

Abstract Here a new series of twenty-one organoselenides, of potential protective activity, were synthesized and tested for their intrinsic cytotoxicity, anti-apoptotic and antioxidant capacities in oligodendrocytes. Most of the organoselenides were able to decrease the ROS levels, revealing antioxidant properties. Compounds 5b and 7b showed a high glutathione peroxidase (GPx)-like activities, which were 1.5 folds more active than ebselen. Remarkably, compound 5a diminished the formation of the oligodendrocytes SubG1 peak in a concentration-dependent manner, indicating its anti-apoptotic properties. Furthermore, based on the SwissADME web interface, we performed an in-silico structure-activ…

0301 basic medicineAntioxidantCell Survivalmedicine.medical_treatmentMolecular ConformationApoptosisCrystallography X-RayProtective Agents01 natural sciencesBiochemistryAntioxidantsCell Line03 medical and health scienceschemistry.chemical_compoundMyelinMiceStructure-Activity RelationshipOrganoselenium CompoundsDrug DiscoverymedicineAnimalsCytotoxicityMolecular Biologychemistry.chemical_classification010405 organic chemistryEbselenGlutathione peroxidaseOrganic ChemistryNeurodegenerationCells oligodendrocytesmedicine.diseaseG1 Phase Cell Cycle Checkpoints0104 chemical sciencesOligodendroglia030104 developmental biologymedicine.anatomical_structurechemistryBiochemistryApoptosisDrug DesignReactive Oxygen SpeciesBioorganic chemistry
researchProduct

Synthesis and antiproliferative activity of a natural like glycoconjugate polycyclic compound

2016

Abstract A natural like O -glycoconjugate polycyclic compound 4 was obtained by a multistep procedure starting from N -(3-methyl-1-(4-nitrophenyl)-1 H -pyrazol-5-yl)acetamide. The glycosyl derivative 4 showed antiproliferative activity against all the tumoral cell lines of the NCI panel in the range 0.47–5.43  μ M. Cytofluorimetric analysis performed on MDA-MB231, a very aggressive breast cancer cell line, which does not express estrogen, progesterone and HER-2/neu receptors, showed that 4 is able to induce prolonged cell cycle arrest at G2/M phase and morphological signs of differentiation. These events are correlated with down-regulation of both cyclin B1 and cdc2, the cyclins involved in…

0301 basic medicineCell cycle checkpointCell SurvivalReceptor ErbB-2StereochemistryGlycoconjugateAntineoplastic AgentsAntiproliferative activityChemistry Techniques Synthetic03 medical and health sciences0302 clinical medicineCyclin-dependent kinaseCell Line TumorDrug DiscoveryHumansPolycyclic CompoundsMDA-MB231Cyclin B1Cell ProliferationCyclinPharmacologychemistry.chemical_classificationBiological ProductsCyclin-dependent kinase 1G2/M phase arrestp21WAF1 inhibitorbiologyChemistryKinaseDrug Discovery3003 Pharmaceutical ScienceO-glycoconjugate polycyclic compoundOrganic ChemistryGeneral MedicineMolecular biologyG2 Phase Cell Cycle CheckpointsGene Expression Regulation Neoplastic030104 developmental biologyCell culturePyrazolo[34-b]pyrazolo[3′4′:23]azepino[45-f]azocineDrug Design030220 oncology & carcinogenesisbiology.proteinM Phase Cell Cycle CheckpointsReceptors ProgesteroneGlycoconjugatesEuropean Journal of Medicinal Chemistry
researchProduct

Design, synthesis, and biological evaluation of a new class of benzo[b]furan derivatives as antiproliferative agents, with in silico predicted antitu…

2018

A new series of 3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furans were synthesized and screened as antitumor agents. As a general trend, tested compounds showed concentration-dependent antiproliferative activity against HeLa and MCF-7 cancer cell lines, exhibiting GI50 values in the low micromolar range. In most cases, insertion of a methyl substituent on the imidazole moiety improved the antiproliferative activity. Therefore, methyl-imidazolyl-benzo[b]furans compounds were tested in cell cycle perturbation experiments, producing cell cycle arrest with proapoptotic effects. Their core similarity to known colchicine binding site binders led us to further study the structure featur…

0301 basic medicineCell cycle checkpointinduced fit docking studieantitubulin agents01 natural sciencesBiochemistryHeLa and MCF-7 cell linesHeLachemistry.chemical_compoundTubulinFuranDrug DiscoveryImidazoleMoietybiologyHeLa and MCF-7 cell lineG2/M phaseTubulin ModulatorsMolecular Docking SimulationAntiproliferative AgentsMCF-7 CellsMolecular MedicineVLAK protocolantitubulin agentStereochemistryIn silicoSubstituent3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furansAntineoplastic Agentsinduced fit docking studiesantitumor agents03 medical and health sciencesHumanscolchicine binding siteBenzofuransCell ProliferationPharmacologyBinding Sites010405 organic chemistryOrganic ChemistryCell Cycle Checkpoints3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furanbiology.organism_classification0104 chemical sciencesProtein Structure Tertiary030104 developmental biologychemistryantitumor agentDrug DesignColchicineHeLa Cells
researchProduct

Aza-macrocyclic triphenylamine ligands for G-quadruplex recognition

2018

A new series of triphenylamine-based ligands with one (TPA1PY), two (TPA2PY) or three pendant aza-macrocycle(s) (TPA3PY) has been synthesised and studied by means of pH-metric titrations, UV/Vis spectroscopy and fluorescence experiments. The affinity of these ligands for G-quadruplex (G4) DNA and the selectivity they show for G4s over duplex DNA were investigated by Forster resonance energy transfer (FRET) melting assays, fluorimetric titrations and circular dichroism spectroscopy. Interestingly, the interactions of the bi- and especially the tri-branched ligands with G4s lead to a very intense redshifted fluorescence emission band that may be associated with intermolecular aggregation betw…

0301 basic medicineCircular dichroismaggregation-induced emissionChemistry Multidisciplinaryamines010402 general chemistryG-quadruplexTriphenylamine01 natural sciencesCatalysisCIRCULAR-DICHROISM03 medical and health scienceschemistry.chemical_compoundGeneral chemistryfluorescent probestriphenylamine polyaminesMoleculeSpectroscopyFLUORESCENT-PROBESScience & TechnologyG-quadruplexChemistryINTRAMOLECULAR CHARGE-TRANSFERANTICANCER DRUG DESIGNOrganic ChemistryaggregationFORMING REGIONDNAGeneral ChemistryFluorescenceG-quadruplexes0104 chemical sciencesCrystallographyChemistry030104 developmental biologyFörster resonance energy transfer2-PHOTON ABSORPTIONPROMOTER REGIONPhysical SciencesEQUILIBRIUM-CONSTANTSGRAPHENE OXIDE03 Chemical Sciencesmacrocyclic ligands
researchProduct

The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease.

2018

Mitochondrial aldehyde dehydrogenase (ALDH-2) plays a major role in the ethanol detoxification pathway by removing acetaldehyde. Therefore, ALDH-2 inhibitors such as disulfiram represent the first therapeutic targeting of ALDH-2 for alcoholism therapy. Areas covered: Recently, ALDH-2 was identified as an essential bioactivating enzyme of the anti-ischemic organic nitrate nitroglycerin, bringing ALDH-2 again into the focus of clinical interest. Mechanistic studies on the nitroglycerin bioactivation process revealed that during bioconversion of nitroglycerin and in the presence of reactive oxygen and nitrogen species the active site thiols of ALDH-2 are oxidized and the enzyme activity is los…

0301 basic medicineClinical BiochemistryAldehyde dehydrogenasemedicine.disease_causeAntioxidants03 medical and health scienceschemistry.chemical_compoundDetoxificationDrug DiscoverymedicineAnimalsHumansMolecular Targeted TherapyPharmacologyEthanolbiologyAldehyde Dehydrogenase MitochondrialMitochondrial Aldehyde DehydrogenaseAcetaldehydeCardiovascular AgentsDisease Models AnimalOxidative Stress030104 developmental biologyBiochemistrychemistryCardiovascular DiseasesDrug DesignCardiovascular agentDisulfirambiology.proteinMolecular MedicineOxidative stressmedicine.drugExpert opinion on therapeutic targets
researchProduct

Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing

2018

AbstractAptamers have in recent years emerged as a viable alternative to antibodies. High-throughput sequencing (HTS) has revolutionized aptamer research by increasing the number of reads from a few (using Sanger sequencing) to millions (using an HTS approach). Despite the availability and advantages of HTS compared to Sanger sequencing, there are only 50 aptamer HTS sequencing samples available on public databases. HTS data in aptamer research are primarily used to compare sequence enrichment between subsequent selection cycles. This approach does not take full advantage of HTS because the enrichment of sequences during selection can be due to inefficient negative selection when using live…

0301 basic medicineComputer scienceAptamerlcsh:MedicineGenomicsComputational biologyCell selexLigandsArticleDNA sequencingCell Line03 medical and health sciencessymbols.namesakeNegative selectionDrug Delivery Systems0302 clinical medicineCell Line TumorHumansGenomic librarylcsh:ScienceCarcinoma Renal CellSelection (genetic algorithm)Gene LibrarySanger sequencingMultidisciplinaryMolecular medicinelcsh:RSELEX Aptamer TechniqueHigh-throughput screeningComputational BiologyHigh-Throughput Nucleotide SequencingNucleotide MetabolismGenomicsAptamers NucleotideFlow CytometryMolecular medicineKidney Neoplasms030104 developmental biologyDrug DesignDrug deliverysymbolsNucleic Acid Conformationlcsh:QFunctional genomics030217 neurology & neurosurgerySystematic evolution of ligands by exponential enrichment
researchProduct

Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: Modeling and simulation approaches

2020

International audience; The emergence in late 2019 of the coronavirus SARS-CoV-2 has resulted in the breakthrough of the COVID-19 pandemic that is presently affecting a growing number of countries. The development of the pandemic has also prompted an unprecedented effort of the scientific community to understand the molecular bases of the virus infection and to propose rational drug design strategies able to alleviate the serious COVID-19 morbidity. In this context, a strong synergy between the structural biophysics and molecular modeling and simulation communities has emerged, resolving at the atomistic level the crucial protein apparatus of the virus and revealing the dynamic aspects of k…

0301 basic medicineComputer sciencedrug designIn silicoPneumonia Viralmembrane fusioncoronavirusReviewsDrug designComputational biologyMolecular Dynamics SimulationViral Nonstructural Proteinsmedicine.disease_causespike proteinAntiviral AgentsMolecular Docking SimulationBiochemistry[SPI.AUTO]Engineering Sciences [physics]/AutomaticModeling and simulationBetacoronavirus03 medical and health sciencesPandemicmedicineHumansstructural biophysicsPandemicsCoronavirus030102 biochemistry & molecular biologySARS-CoV-2free-energy methodsmolecular modelingRational designCOVID-19General ChemistryVirus InternalizationSARS unique domainmolecular dynamics3. Good healthMolecular Docking Simulation030104 developmental biologyDocking (molecular)Settore CHIM/03 - Chimica Generale E InorganicaSpike Glycoprotein CoronavirusdockingproteasesCoronavirus Infections
researchProduct

Design, synthesis and preliminary evaluation of dopamine-amino acid conjugates as potential D1 dopaminergic modulators.

2016

Abstract The dopamine-amino acid conjugate DA-Phen was firstly designed to obtain a useful prodrug for the therapy of Parkinson's disease, but experimental evidence shows that it effectively interacts with D1 dopamine receptors (D1DRs), leading to an enhancement in cognitive flexibility and to the development of adaptive strategies in aversive mazes, together with a decrease in despair-like behavior. In this paper, homology modelling, molecular dynamics, and site mapping of D1 receptor were carried out with the aim of further performing docking studies on other dopamine conjugates compared with D1 agonists, in the attempt to identify new compounds with potential dopaminergic activity. Two n…

0301 basic medicineDopamineDopamine AgentsChemistry Techniques SyntheticPharmacology01 natural sciencesDocking03 medical and health sciencesDopamine receptor D1Drug StabilityDopamineCatalytic DomainDrug DiscoverymedicineAnimalsHumansAmino Acidschemistry.chemical_classificationConjugatePharmacologyPCA010405 organic chemistryChemistrySynthesiDrug Discovery3003 Pharmaceutical ScienceReceptors Dopamine D1DopaminergicOrganic ChemistryBrainGeneral MedicineProdrug0104 chemical sciencesAmino acidAmino acidRatsMolecular Docking Simulation030104 developmental biologyBiochemistryDocking (molecular)Dopamine receptorDrug DesignMolecular modellingConjugatemedicine.drugEuropean journal of medicinal chemistry
researchProduct

Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing.

2016

Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metab…

0301 basic medicineDrugmedia_common.quotation_subjectGenetic VectorsBiologyPharmacologyToxicologyENCODERisk AssessmentAdenoviridae03 medical and health sciencesToxicity TestsmedicineAnimalsHumansmedia_commonPharmacologyLiver injurychemistry.chemical_classificationReproducibility of ResultsGeneral MedicineHep G2 Cellsmedicine.disease030104 developmental biologyEnzymemedicine.anatomical_structureDrug developmentchemistryPharmaceutical PreparationsHepg2 cellsHepatocyteDrug DesignCancer researchHepatocytesChemical and Drug Induced Liver InjuryDrug metabolismExpert opinion on drug metabolismtoxicology
researchProduct